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We consider linear polymer chains of fixed length N made up randomly of two 
different kinds of monomers X and Y near the tricritical theta point. Two kinds 
of short-range repulsive volume-excluded interactions, X-X and Y-Y are con- 
sidered. In addition, short-range attractive two-body X-Y interactions and three- 
body interactions are included in the theoretical treatment. We derive the distribu- 
tion of the average size of the random coil over the ensemble of primary structures 
or X-Y sequences. The variance' of thermal or configurational averages for the 
different sequences is calculated making use of field-theoretic methods. 

1. I N T R O D U C T O R Y  R E M A R K S  A N D  D E F I N I T I O N S  

Linear  p o l y m e r  sequences  o f  fixed length  N, r a n d o m l y  cons t ruc ted  
f rom two k inds  o f  monomers ,  X and  Y, have been  cons ide red  in the contex t  
o f  genera t ion  o f  p reb io t i c  in fo rma t ion  (Eigen and  Schuster ,  1977). 

The p r o b l e m  of  s tudy ing  the d i s t r ibu t ion  o f  the rmal  or  s ta t is t ical  
averages  o f  these chains  over  an ensemble  o f  r a n d o m l y  cons t ruc ted  sequen-  
ces is ana logous  to the  averaging  p r o c e d u r e  for  glassy,  d i so rde red  systems 
that  arises in sol id  state phys ics  (Anderson ,  1983). 

This ana logy  has been  taken  advan tage  o f  by  m a p p i n g  the set o f  pa t te rns  
o f  in t racha in  t w o - b o d y  in te rac t ions  for  a fixed p r imary  s t ructure  onto  a 
sp in  glass,  ass igning a sp in  value  to each k ind  o f  monomer ;  for  example ,  
S = + I  f o r X a n d S = - I  f o r Y .  

The statist ics o f  this quenched  d i so rde red  system is re levant  to the 
p r o b l e m  of  f inding the d i s t r ibu t ion  o f  conf igura t ion  averages  in l inear  t R N A  
chains  for  the  different  a pr ior i  G - C  sequences  (Eigen and Schuster ,  1977). 

In o r d e r  to speci fy  the theore t ica l  f r amework ,  we in t roduce  the fol low- 
ing def ini t ions:  
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Let r(x) denote a chain conformation with x a contour variable indicat- 
ing the position on the chain; x belongs to the interval [0, N].  We construct 
an equivalence relation as follows: r~ - r2 if both conformations belong to 
the same configuration, that is, they have the same pattern of short-range 
two-body interactions. Let F = F ( r )  be a functional that respects the 
equivalence relation, which means 

r, ~ r2-~ F(r,)  = F(r2) (1) 

Two kinds of  averages can be defined: 
(a) The thermal or statistical average for a given sequence, denoted F, 

which is the average over all possible configurations, that is, over all rk such 
that r i~ '~  for i ~ j .  

(b) The average over the ensemble of  primary structures or random 
sequences, denoted (F). 

The two-body interactions are determined by the bare (unnormalized) 
coupling variable v(x, x'). Thus, v can take three different values corre- 
sponding to the three possible interactions between the monomer  in position 
x and that in position x'. The interactions are X-X,  Y-Y, and X-Y. The 
first two kinds of  interactions are familiar from homogeneous polymer 
statistics; they represent short-range, repulsive, volume-excluded interac- 
tions (Oono and Freed, 1981). 

In order to define v, we introduce a discrete stochastic process (x is 
here regarded as a natural number): 

+11 if the xth monomer  in the chain is X 
s(x) = (2) 

- otherwise 

The probability for s(x) to take any one of the two possible values is 1/2. 
Each realization of s(x) corresponds to a definite primary structure or X - Y  
sequence. 

The continuous counterpart  of such process is determined by the 
equations 

( s ( x ) s ( x ' ) ) = ~ ( x - x ' ) ,  (s(x)) = 0  (3) 

where the angle brackets denote an average over all possible primary 
structures, that is, over all sequences of  N monomers.  Then, v(x, x') is 
defined as follows: 

v(x, x') = v + a[s (x )  + s(x ')]  + Bs(x)s(x ' )  (4) 

where A and B are bare constants and v is the Flory bare coupling constant. 
Therefore 

(v(x, x ' ) ) =  v+ B~(x -  x') (5) 
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The situation of interest to us occurs in a neighbourhood of the tricritical 
theta point, that is, when the two-body interactions averaged over all possible 
realizations of s(x)  are almost zero, that is, v -~ 0. 

At the theta point we can define the concept oftheta-secondary structure 
or theta-configuration ~o containing the conformation ro, as the set of 
conformations r such that r - r 0 ,  that is, 

f o N f o N d X d x ' v ( x , x ' ) 6 ( r ( x ) - - r ( x ' ) )  

foNfo = I = dx dx' v(x, x') ~(r(x)  - r(x')) 8(ro(x) - ro(x')) (6) 

where I is the two-body contribution to the potential energy and is given by 

;o fo I = dx dx' v(x, x') 6(ro(x) - ro(x')) (7) 

We shall calculate dispersions over the quenched randomness making 
use of the field theory formalism. This requires that we introduce the 
contribution of a virtual field f ( r )  in the Hamiltonian and consider the limit 
f ~  0 in the Frechet derivatives of  the partition function with respect to f 
The partition function is a functional that depends on the specific realization 
of s(x)  and on the field f 

2. FIELD-THEORETIC CALCULATION OF THE VARIANCE FOR 
CONFIGURATIONAL AVERAGES 

Formally, the partition function can be expressed by means of the 
following integral: 

f 
Q = t dm(r (x ) )  e x p [ - H ( r ( x ) ) ]  (8) 

r(O)=O,r(N)--R 

where m(r (x ) )  is a measure in the conformation space and the Hamiltonian 
H is a functional of the path r(x). This Hamiltonian contains the short- 
range, volume-excluded interactions (Kholodenko and Freed, 1983), the 
remaining two-body interactions, the three-body interactions and the 
contribution from the virtual field. 

Instead of considering the integration over all possible paths, we 
discretize the range of  the contour variable. This is done by introducing an 
arbitrary partition PM given by 

PM={ro, r l , r 2 , . . . , r M } ,  where r j = r ( j N / M )  (9) 
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Thus, with respect to PM, the expression (8) can be replaced by a 
multiple integration over M + 1 variables so that 

Q = l i m o  I ~ drj6(ro) 6(rM--R)exp(--Hg)= lim QM (10) 
j = 0  M~oe 

where HM is a function of M + 1 variables instead of being a functional; 
this function is defined as follows: 

1 ~ (r~+,-ri] 2 
HM =-~ + H'M = H~M + H'M (II) \ N / M ]  Z. i=0  

The term H~t is functionally dependent o n f ( R )  and contains the two-body 
interaction term, parametrically dependent on v, A, and B, and the three- 
body interaction term, parametrically dependent on the Flory bare three- 
body interaction constant C: 

H~=I[ ~ v(iN/M, jN/M) 6r.rj+Ic ~ ~rmSr.rk]--f(rM) (12) 
Z L i,j=o ' 3 k=o ' ' 

The Kronecker symbol ~r,~, is defined as follows: 

{O 1 if r,=% 6r,,, = (13) 
otherwise 

We now consider the size R of the random coil, R(r(x))= rM. 
Throughout what follows, a P~-discretization of the problem with M >> N 
will be adopted. 

The Green's function G for a disordered linear polymer is given by 

0In Q ,. 0In QM[ 
G(R) :0f-f~ f:o :~m~ Of(R-----~[f=o (14) 

We now concentrate on the calculation of the variance of the thermal 
average R E . This quantity is given by 

R-Z- 02g(P)0P 2 p=o (15) 

where g(p) is the Fourier transform of the Green's function in momentum 
space. 

The central problem is to evaluate the variance 

V ( R Z ) = ( ( R E - ( [ R 2 ] ) ) 2 )  = V ( 1 6 )  

1 f f  021n(Q(L)> j=o V= Z R~R~ Of(R,) Of(R2) dR, dR2 (17) 

(L = large integer), where Q(L) is a partition function for L identical copies 
of a single polymer chain corresponding to a single primary structure. 
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Therefore the problem is reduced to the computation of the average 
of Q(L) over the ensemble of all possible realizations s(x). 

We define the effective partition functions Qeli(oz) corresponding to 
homogeneous polymer chains of length N in such a way so that the following 
relation holds: 

L 

c~(~) (18) (Q(L) )=  r[ ,~e~ 
c ~ = l  

The effect of the existence of a quenched randomness determining 
distinctive sequences is to enhance the repulsiveness of volume-excluded 
interactions and to diminish the effect of three-body interactions. In order 
to prove this, we consider the average 

fL. 
(Q(L)) = lim l-I I] dGi ~(Go) 6(G~- R~) e x p [ - S M ( L ) ]  (19) 

M ~ e o  . a = l  i = 0  

where 

L L M [ 2  HM(L)=  E H~4(a )+  E E ~ ..... j 
c ~ = l  ~ = 1  i,j=O 

2 13~,~ k=O 

C-3A2 )--f(GM)] (20) 
3A 2 r3 . . . .  j ~  . . . .  k 

Therefore, the effective Hamiltonian is given by 

HeffM = [-/~4+i,~-=0 ~ \ {vefr82 "~<,+Cefr6 k = O  ~ ~r'rfrJ'k) -f(rM) (21) 

The two-body effective interactions are of  the short-range, volume-excluded 
type with a bare coupling constant 

V e a = v + 2 A  2 lim 
o ln[N~=l 

. - ,~ j=o  df-~-~ - R - - ~ -  (22) 

where Qj(a)  is the effective partition function for a homogeneous linear 
chain of length jN/M such that the two endpoints are coincident. 

The effective three-body interaction constant is 

Cef t = C - 3 A  2 (23) 

We evaluate the variance to first order making use of equations (17)- 
(23) [for a review of the perturbation methods implemented in homogeneous 
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polymer statistics, see Kholodenko and Freed (1983)]; such a calculation 
gives 

V = (1/128)NeAe( 'n '4+4'rr3)  (24) 

The configurational averages are more spread as the amount of  stored 
information given by the length of  the chains increases (Eigen and Schuster, 
1977; Anderson, 1983). The first-order perturbative calculation reveals that 
the limit of  vanishing three-body interactions is a well-defined limit in a 
neighborhood of the theta point, since the variance is independent of  the 
bare Flory constant C. 
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