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We consider linear polymer chains of fixed length N made up randomly of two
different kinds of monomers X and Y near the tricritical theta point. Two kinds
of short-range repulsive volume-excluded interactions, X-X and Y-Y are con-
sidered. In addition, short-range attractive two-body X-Y interactions and three-
body interactions are included in the theoretical treatment. We derive the distribu-
tion of the average size of the random coil over the ensemble of primary structures
or X-Y sequences. The variance of thermal or configurational averages for the
different sequences is calculated making use of field-theoretic methods.

1. INTRODUCTORY REMARKS AND DEFINITIONS

Linear polymer sequences of fixed length N, randomly constructed
from two kinds of monomers, X and Y, have been considered in the context
of generation of prebiotic information (Eigen and Schuster, 1977).

The problem of studying the distribution of thermal or statistical
averages of these chains over an ensemble of randomly constructed sequen-
ces is analogous to the averaging procedure for glassy, disordered systems
that arises in solid state physics (Anderson, 1983).

This analogy has been taken advantage of by mapping the set of patterns
of intrachain two-body interactions for a fixed primary structure onto a
spin glass, assigning a spin value to each kind of monomer; for example,
S=+1for X and S=-1for Y.

The statistics of this quenched disordered system is relevant to the
problem of finding the distribution of configuration averages in linear tRNA
chains for the different a priori G-C sequences (Eigen and Schuster, 1977).

In order to specify the theoretical framework, we introduce the follow-
ing definitions:
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Let r(x) denote a chain conformation with x a contour variable indicat-
ing the position on the chain; x belongs to the interval [0, N]. We construct
an equivalence relation as follows: r, ~ r, if both conformations belong to
the same configuration, that is, they have the same pattern of short-range
two-body interactions. Let F= F(r) be a functional that respects the
equivalence relation, which means

r~r~> F(r)=F(r,) (1)

Two kinds of averages can be defined:

(a) The thermal or statistical average for a given sequence, denoted F,
which is the average over all possible configurations, that is, over all r, such
that r;  r; for i #j.

(b) The average over the ensemble of primary structures or random
sequences, denoted (F).

The two-body interactions are determined by the bare (unnormalized)
coupling variable v(x, x). Thus, v can take three different values corre-
sponding to the three possible interactions between the monomer in position
x and that in position x'. The interactions are X-X, Y-Y, and X-Y. The
first two kinds of interactions are familiar from homogeneous polymer
statistics; they represent short-range, repulsive, volume-excluded interac-
tions (Oono and Freed, 1981).

In order to define v, we introduce a discrete stochastic process (x is
here regarded as a natural number):

+1 if the xth monomer in the chain is X
s(x)= (2)

-1 otherwise
The probability for s(x) to take any one of the two possible values is 1/2.
Each realization of s(x) corresponds to a definite primary structure or X-Y
sequence.
The continuous counterpart of such process is determined by the
equations

(s(x)s(x)N=8(x—x), (s(x)=0 (3)

where the angle brackets denote an average over all possible primary
structures, that is, over all sequences of N monomers. Then, v(x, x’) is
defined as follows:

v(x, x")=v+A[s(x)+s(x)]+ Bs(x)s(x) (4)

where A and B are bare constants and v is the Flory bare coupling constant.
Therefore

(v(x, x)y=v+B6(x—x'") (5)
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The situation of interest to us occurs in a neighbourhood of the tricritical
theta point, that is, when the two-body interactions averaged over all possible
realizations of s(x) are almost zero, that is, v =0.

At the theta point we can define the concept of theta-secondary structure
or theta-configuration 7, containing the conformation r,, as the set of
conformations r such that r ~ r,, that is,

J J dx dx' v(x, x') 8(r(x)—r(x")

=] =I J‘N dxdx’ v(x, x") 8(r(x)—r(x"}) 8(ro{x)—ro(x))  (6)

where I is the two-body contribution to the potential energy and is given by

o

N N
J dx dx' v(x, x") 8(ro(x) —re(x")) (7)
0

We shall calculate dispersions over the quenched randomness making
use of the field theory formalism. This requires that we introduce the
contribution of a virtual field f(r) in the Hamiltonian and consider the limit
f-0in the Frechet derivatives of the partition function with respect to f.

The partition function is a functional that depends on the specific realization
of s(x) and on the field f.

2. FIELD-THEORETIC CALCULATION OF THE VARIANCE FOR
CONFIGURATIONAL AVERAGES

Formally, the partition function can be expressed by means of the
following integral:

Q= J dm(r(x)) exp[—H(r(x))] (8)
#(0)=0,r(N)=R

where m(r(x)) is a measure in the conformation space and the Hamiltonian
H is a functional of the path r(x). This Hamiltonian contains the short-
range, volume-excluded interactions (Kholodenko and Freed, 1983), the
remaining two-body interactions, the three-body interactions and the
contribution from the virtual field.

Instead of considering the integration over all possible paths, we
discretize the range of the contour variable. This is done by introducing an
arbitrary partition P,, given by

PM:{rO’rlarI_’a""rM}a Where r'j:r(]N/M) (9)
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Thus, with respect to P,,, the expression (8) can be replaced by a
multiple integration over M +1 variables so that

Q=A14im I ﬁ dr; 8(ro) 8(rys — R) exp(—Hpy ) = lim Qp (10)
>0 j=0 Moo

where H,, is a function of M +1 variables instead of being a functional;
this function is defined as follows:

i ti e ’
——z (]\;‘/M) +H\y=H%Yy+H)y (11)
The term H'y, is functionally dependent on f(R) and contains the two-body
interaction term, parametrically dependent on v, A, and B, and the three-
body interaction term, parametrically dependent on the Flory bare three-
body interaction constant C:

1[ ™ g
$w=—[ Y v(iN/M,jN/M) 5,,.,.+1c ) 6,.,.5ri,k}—f(rM) (12)
220 T3 e Y '

The Kronecker symbol §,,, is defined as follows:
5, ={+1 fri=mn

0 otherwise (13)

We now consider the size R of the random coil, R(r(x))=ru.
Throughout what follows, a P,,-discretization of the problem with M >» N
will be adopted.

The Creen’s function G for a disordered linear polymer is given by

dln Q i d1n Qum
of(R)| =0 M= of(R) |,

We now concentrate on the calculation of the variance of the thermal
average R”. This quantity is given by

G(R)= (14)

_— (92
ap p=0
where g(p) is the Fourier transform of the Green’s function in momentum
space.
The central problem is to evaluate the variance

V(R =(R*—([RP)))=V (16)
1 2oa 8 10(Q(L))
”L” R‘Rzaf(Rl)af(Rz) =0

(L =large integer), where Q(L) is a partition function for L identical copies
of a single polymer chain corresponding to a single primary structure.

dR, dR, (17)
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Therefore the problem is reduced to the computation of the average
of Q(L) over the ensemble of all possible realizations s(x).

We define the effective partition functions Q.z(a) corresponding to
homogeneous polymer chains of length N in such a way so that the following
relation holds:

(Q(L)y= H Q% (18)

The effect of the existence of a quenched randomness determining
distinctive sequences is to enhance the repulsiveness of volume-excluded
interactions and to diminish the effect of three-body interactions. In order
to prove this, we consider the average

(Q(L)= lim f T 1T dras 8(raq) 8(rans — R.) expl—Hyr(L)]  (19)

M -»o0 a=1i=0

where

HaD)= X M@+ 5 ¥ |2,

a= a=11ij=0
s M
347 5 3 (5B
B#Ea k=0
C-3A%
- 3A2 Srm' aj rmrak> f(raM)] (20)
Therefore, the effective Hamiltonian is given by
e M Vept eﬁ M
HeﬂMzHM+ Z _2—8rir,+ Z ar,r, irg _f(rM) (21)
ij=0 ’

The two-body effective interactions are of the short-range, volume-excluded
type with a bare coupling constant
M 3In[Mgy Qa)]

Vg =0+2A% lim
" Mm,zo af(R, =R =0)

(22)

where Q;(«) is the effective partition function for a homogeneous linear
chain of length jN/M such that the two endpoints are coincident.
The effective three-body interaction constant is

Cs=C—3A° (23)

We evaluate the variance to first order making use of equations (17)-
(23) [for a review of the perturbation methods implemented in homogeneous
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polymer statistics, see Kholodenko and Freed (1983)]; such a calculation
gives

V=(1/128) N*AX(w*+47°) (24)

The configurational averages are more spread as the amount of stored
information given by the length of the chains increases (Eigen and Schuster,
1977; Anderson, 1983). The first-order perturbative calculation reveals that
the limit of vanishing three-body interactions is a well-defined limit in a
neighborhood of the theta point, since the variance is independent of the
bare Flory constant C.
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